bitops

This module implements a series of low level methods for bit manipulation.

By default, this module use compiler intrinsics where possible to improve performance on supported compilers: GCC, LLVM_GCC, CLANG, VCC, ICC.

The module will fallback to pure nim procs incase the backend is not supported. You can also use the flag noIntrinsicsBitOpts to disable compiler intrinsics.

This module is also compatible with other backends: Javascript, Nimscript as well as the compiletime VM.

As a result of using optimized function/intrinsics some functions can return undefined results if the input is invalid. You can use the flag noUndefinedBitOpts to force predictable behaviour for all input, causing a small performance hit.

At this time only fastLog2, firstSetBit, `countLeadingZeroBits, countTrailingZeroBits may return undefined and/or platform dependant value if given invalid input.

Types

BitsRange[T] = range[0 .. sizeof(T) * 8 - 1]
Returns a range with all bit positions for type T   Source Edit

Procs

proc bitnot[T: SomeInteger](x: T): T {...}{.magic: "BitnotI", noSideEffect.}
Computes the bitwise complement of the integer x.   Source Edit
proc bitand[T: SomeInteger](x, y: T): T {...}{.magic: "BitandI", noSideEffect.}
Computes the bitwise and of numbers x and y.   Source Edit
proc bitor[T: SomeInteger](x, y: T): T {...}{.magic: "BitorI", noSideEffect.}
Computes the bitwise or of numbers x and y.   Source Edit
proc bitxor[T: SomeInteger](x, y: T): T {...}{.magic: "BitxorI", noSideEffect.}
Computes the bitwise xor of numbers x and y.   Source Edit
proc setMask[T: SomeInteger](v: var T; mask: T) {...}{.inline.}
Returns v, with all the 1 bits from mask set to 1   Source Edit
proc clearMask[T: SomeInteger](v: var T; mask: T) {...}{.inline.}
Returns v, with all the 1 bits from mask set to 0   Source Edit
proc flipMask[T: SomeInteger](v: var T; mask: T) {...}{.inline.}
Returns v, with all the 1 bits from mask flipped   Source Edit
proc setBit[T: SomeInteger](v: var T; bit: BitsRange[T]) {...}{.inline.}
Returns v, with the bit at position bit set to 1   Source Edit
proc clearBit[T: SomeInteger](v: var T; bit: BitsRange[T]) {...}{.inline.}
Returns v, with the bit at position bit set to 0   Source Edit
proc flipBit[T: SomeInteger](v: var T; bit: BitsRange[T]) {...}{.inline.}
Returns v, with the bit at position bit flipped   Source Edit
proc testBit[T: SomeInteger](v: T; bit: BitsRange[T]): bool {...}{.inline.}
Returns true if the bit in v at positions bit is set to 1   Source Edit
proc countSetBits(x: SomeInteger): int {...}{.inline, noSideEffect.}
Counts the set bits in integer. (also called Hamming weight.)   Source Edit
proc popcount(x: SomeInteger): int {...}{.inline, noSideEffect.}
Alias for for countSetBits (Hamming weight.)   Source Edit
proc parityBits(x: SomeInteger): int {...}{.inline, noSideEffect.}
Calculate the bit parity in integer. If number of 1-bit is odd parity is 1, otherwise 0.   Source Edit
proc firstSetBit(x: SomeInteger): int {...}{.inline, noSideEffect.}
Returns the 1-based index of the least significant set bit of x. If x is zero, when noUndefinedBitOpts is set, result is 0, otherwise result is undefined.   Source Edit
proc fastLog2(x: SomeInteger): int {...}{.inline, noSideEffect.}
Quickly find the log base 2 of an integer. If x is zero, when noUndefinedBitOpts is set, result is -1, otherwise result is undefined.   Source Edit
proc countLeadingZeroBits(x: SomeInteger): int {...}{.inline, noSideEffect.}
Returns the number of leading zero bits in integer. If x is zero, when noUndefinedBitOpts is set, result is 0, otherwise result is undefined.   Source Edit
proc countTrailingZeroBits(x: SomeInteger): int {...}{.inline, noSideEffect.}
Returns the number of trailing zeros in integer. If x is zero, when noUndefinedBitOpts is set, result is 0, otherwise result is undefined.   Source Edit
proc rotateLeftBits(value: uint8; amount: range[0 .. 8]): uint8 {...}{.inline, noSideEffect,
    raises: [], tags: [].}
Left-rotate bits in a 8-bits value.   Source Edit
proc rotateLeftBits(value: uint16; amount: range[0 .. 16]): uint16 {...}{.inline,
    noSideEffect, raises: [], tags: [].}
Left-rotate bits in a 16-bits value.   Source Edit
proc rotateLeftBits(value: uint32; amount: range[0 .. 32]): uint32 {...}{.inline,
    noSideEffect, raises: [], tags: [].}
Left-rotate bits in a 32-bits value.   Source Edit
proc rotateLeftBits(value: uint64; amount: range[0 .. 64]): uint64 {...}{.inline,
    noSideEffect, raises: [], tags: [].}
Left-rotate bits in a 64-bits value.   Source Edit
proc rotateRightBits(value: uint8; amount: range[0 .. 8]): uint8 {...}{.inline, noSideEffect,
    raises: [], tags: [].}
Right-rotate bits in a 8-bits value.   Source Edit
proc rotateRightBits(value: uint16; amount: range[0 .. 16]): uint16 {...}{.inline,
    noSideEffect, raises: [], tags: [].}
Right-rotate bits in a 16-bits value.   Source Edit
proc rotateRightBits(value: uint32; amount: range[0 .. 32]): uint32 {...}{.inline,
    noSideEffect, raises: [], tags: [].}
Right-rotate bits in a 32-bits value.   Source Edit
proc rotateRightBits(value: uint64; amount: range[0 .. 64]): uint64 {...}{.inline,
    noSideEffect, raises: [], tags: [].}
Right-rotate bits in a 64-bits value.   Source Edit
proc reverseBits[T: SomeUnsignedInt](x: T): T {...}{.noSideEffect.}
Return the bit reversal of x.

Examples:

doAssert reverseBits(0b10100100'u8) == 0b00100101'u8
doAssert reverseBits(0xDD'u8) == 0xBB'u8
doAssert reverseBits(0xDDBB'u16) == 0xDDBB'u16
doAssert reverseBits(0xDEADBEEF'u32) == 0xF77DB57B'u32
  Source Edit

Macros

macro setBits(v: typed; bits: varargs[typed]): untyped
Returns v, with the bits at positions bits set to 1   Source Edit
macro clearBits(v: typed; bits: varargs[typed]): untyped
Returns v, with the bits at positions bits set to 0   Source Edit
macro flipBits(v: typed; bits: varargs[typed]): untyped
Returns v, with the bits at positions bits set to 0   Source Edit