math

Constructive mathematics is naturally typed. -- Simon Thompson

Basic math routines for Nim.

Note that the trigonometric functions naturally operate on radians. The helper functions degToRad and radToDeg provide conversion between radians and degrees.

import math
from sequtils import map

let a = [0.0, PI/6, PI/4, PI/3, PI/2]

echo a.map(sin)
# @[0.0, 0.499…, 0.707…, 0.866…, 1.0]

echo a.map(tan)
# @[0.0, 0.577…, 0.999…, 1.732…, 1.633…e+16]

echo cos(degToRad(180.0))
# -1.0

echo sqrt(-1.0)
# nan   (use `complex` module)

This module is available for the JavaScript target.

See also:

  • complex module for complex numbers and their mathematical operations
  • rationals module for rational numbers and their mathematical operations
  • fenv module for handling of floating-point rounding and exceptions (overflow, zero-divide, etc.)
  • random module for fast and tiny random number generator
  • mersenne module for Mersenne twister random number generator
  • stats module for statistical analysis
  • strformat module for formatting floats for print
  • system module Some very basic and trivial math operators are on system directly, to name a few shr, shl, xor, clamp, etc.

Types

FloatClass = enum
  fcNormal,                   ## value is an ordinary nonzero floating point value
  fcSubnormal,                ## value is a subnormal (a very small) floating point value
  fcZero,                     ## value is zero
  fcNegZero,                  ## value is the negative zero
  fcNan,                      ## value is Not-A-Number (NAN)
  fcInf,                      ## value is positive infinity
  fcNegInf                    ## value is negative infinity
Describes the class a floating point value belongs to. This is the type that is returned by classify proc.   Source Edit

Consts

PI = 3.141592653589793
The circle constant PI (Ludolph's number)   Source Edit
TAU = 6.283185307179586
The circle constant TAU (= 2 * PI)   Source Edit
E = 2.718281828459045
Euler's number   Source Edit
MaxFloat64Precision = 16
Maximum number of meaningful digits after the decimal point for Nim's float64 type.   Source Edit
MaxFloat32Precision = 8
Maximum number of meaningful digits after the decimal point for Nim's float32 type.   Source Edit
MaxFloatPrecision = 16
Maximum number of meaningful digits after the decimal point for Nim's float type.   Source Edit

Procs

proc binom(n, k: int): int {...}{.noSideEffect, raises: [], tags: [].}
Computes the binomial coefficient.

Examples:

doAssert binom(6, 2) == binom(6, 4)
doAssert binom(6, 2) == 15
doAssert binom(-6, 2) == 1
doAssert binom(6, 0) == 1
  Source Edit
proc fac(n: int): int {...}{.raises: [], tags: [].}

Computes the factorial of a non-negative integer n.

See also:

Examples:

doAssert fac(3) == 6
doAssert fac(4) == 24
doAssert fac(10) == 3628800
  Source Edit
proc classify(x: float): FloatClass {...}{.raises: [], tags: [].}

Classifies a floating point value.

Returns x's class as specified by FloatClass enum.

Examples:

doAssert classify(0.3) == fcNormal
doAssert classify(0.0) == fcZero
doAssert classify(0.3 / 0.0) == fcInf
doAssert classify(-0.3 / 0.0) == fcNegInf
  Source Edit
proc isPowerOfTwo(x: int): bool {...}{.noSideEffect, raises: [], tags: [].}

Returns true, if x is a power of two, false otherwise.

Zero and negative numbers are not a power of two.

See also:

Examples:

doAssert isPowerOfTwo(16) == true
doAssert isPowerOfTwo(5) == false
doAssert isPowerOfTwo(0) == false
doAssert isPowerOfTwo(-16) == false
  Source Edit
proc nextPowerOfTwo(x: int): int {...}{.noSideEffect, raises: [], tags: [].}

Returns x rounded up to the nearest power of two.

Zero and negative numbers get rounded up to 1.

See also:

Examples:

doAssert nextPowerOfTwo(16) == 16
doAssert nextPowerOfTwo(5) == 8
doAssert nextPowerOfTwo(0) == 1
doAssert nextPowerOfTwo(-16) == 1
  Source Edit
proc countBits32(n: int32): int {...}{.noSideEffect, deprecated: "Deprecated since v0.20.0; use \'bitops.countSetBits\' instead",
                              raises: [], tags: [].}
Deprecated: Deprecated since v0.20.0; use 'bitops.countSetBits' instead

Examples:

doAssert countBits32(7) == 3
doAssert countBits32(8) == 1
doAssert countBits32(15) == 4
doAssert countBits32(16) == 1
doAssert countBits32(17) == 2
  Source Edit
proc sum[T](x: openArray[T]): T {...}{.noSideEffect.}

Computes the sum of the elements in x.

If x is empty, 0 is returned.

See also:

Examples:

doAssert sum([1, 2, 3, 4]) == 10
doAssert sum([-1.5, 2.7, -0.1]) == 1.1
  Source Edit
proc prod[T](x: openArray[T]): T {...}{.noSideEffect.}

Computes the product of the elements in x.

If x is empty, 1 is returned.

See also:

Examples:

doAssert prod([1, 2, 3, 4]) == 24
doAssert prod([-4, 3, 5]) == -60
  Source Edit
proc cumsummed[T](x: openArray[T]): seq[T]

Return cumulative (aka prefix) summation of x.

See also:

Examples:

let a = [1, 2, 3, 4]
doAssert cumsummed(a) == @[1, 3, 6, 10]
  Source Edit
proc cumsum[T](x: var openArray[T])

Transforms x in-place (must be declared as var) into its cumulative (aka prefix) summation.

See also:

Examples:

var a = [1, 2, 3, 4]
cumsum(a)
doAssert a == @[1, 3, 6, 10]
  Source Edit
proc sqrt(x: float32): float32 {...}{.importc: "sqrtf", header: "<math.h>", noSideEffect.}
  Source Edit
proc sqrt(x: float64): float64 {...}{.importc: "sqrt", header: "<math.h>", noSideEffect.}

Computes the square root of x.

See also:

echo sqrt(4.0)  ## 2.0
echo sqrt(1.44) ## 1.2
echo sqrt(-4.0) ## nan
  Source Edit
proc cbrt(x: float32): float32 {...}{.importc: "cbrtf", header: "<math.h>", noSideEffect.}
  Source Edit
proc cbrt(x: float64): float64 {...}{.importc: "cbrt", header: "<math.h>", noSideEffect.}

Computes the cubic root of x.

See also:

echo cbrt(8.0)   ## 2.0
echo cbrt(2.197) ## 1.3
echo cbrt(-27.0) ## -3.0
  Source Edit
proc ln(x: float32): float32 {...}{.importc: "logf", header: "<math.h>", noSideEffect.}
  Source Edit
proc ln(x: float64): float64 {...}{.importc: "log", header: "<math.h>", noSideEffect.}

Computes the natural logarithm of x.

See also:

echo ln(exp(4.0)) ## 4.0
echo ln(1.0))     ## 0.0
echo ln(0.0)      ## -inf
echo ln(-7.0)     ## nan
  Source Edit
proc log[T: SomeFloat](x, base: T): T {...}{.noSideEffect.}

Computes the logarithm of x to base base.

See also:

echo log(9.0, 3.0)  ## 2.0
echo log(32.0, 2.0) ## 5.0
echo log(0.0, 2.0)  ## -inf
echo log(-7.0, 4.0) ## nan
echo log(8.0, -2.0) ## nan
  Source Edit
proc log10(x: float32): float32 {...}{.importc: "log10f", header: "<math.h>", noSideEffect.}
  Source Edit
proc log10(x: float64): float64 {...}{.importc: "log10", header: "<math.h>", noSideEffect.}

Computes the common logarithm (base 10) of x.

See also:

echo log10(100.0)  ## 2.0
echo log10(0.0)    ## nan
echo log10(-100.0) ## -inf
  Source Edit
proc exp(x: float32): float32 {...}{.importc: "expf", header: "<math.h>", noSideEffect.}
  Source Edit
proc exp(x: float64): float64 {...}{.importc: "exp", header: "<math.h>", noSideEffect.}

Computes the exponential function of x (e^x).

See also:

echo exp(1.0)     ## 2.718281828459045
echo ln(exp(4.0)) ## 4.0
echo exp(0.0)     ## 1.0
echo exp(-1.0)    ## 0.3678794411714423
  Source Edit
proc sin(x: float32): float32 {...}{.importc: "sinf", header: "<math.h>", noSideEffect.}
  Source Edit
proc sin(x: float64): float64 {...}{.importc: "sin", header: "<math.h>", noSideEffect.}

Computes the sine of x.

See also:

echo sin(PI / 6)         ## 0.4999999999999999
echo sin(degToRad(90.0)) ## 1.0
  Source Edit
proc cos(x: float32): float32 {...}{.importc: "cosf", header: "<math.h>", noSideEffect.}
  Source Edit
proc cos(x: float64): float64 {...}{.importc: "cos", header: "<math.h>", noSideEffect.}

Computes the cosine of x.

See also:

echo cos(2 * PI)         ## 1.0
echo cos(degToRad(60.0)) ## 0.5000000000000001
  Source Edit
proc tan(x: float32): float32 {...}{.importc: "tanf", header: "<math.h>", noSideEffect.}
  Source Edit
proc tan(x: float64): float64 {...}{.importc: "tan", header: "<math.h>", noSideEffect.}

Computes the tangent of x.

See also:

echo tan(degToRad(45.0)) ## 0.9999999999999999
echo tan(PI / 4)         ## 0.9999999999999999
  Source Edit
proc sinh(x: float32): float32 {...}{.importc: "sinhf", header: "<math.h>", noSideEffect.}
  Source Edit
proc sinh(x: float64): float64 {...}{.importc: "sinh", header: "<math.h>", noSideEffect.}

Computes the hyperbolic sine of x.

See also:

echo sinh(0.0)            ## 0.0
echo sinh(1.0)            ## 1.175201193643801
echo sinh(degToRad(90.0)) ## 2.301298902307295
  Source Edit
proc cosh(x: float32): float32 {...}{.importc: "coshf", header: "<math.h>", noSideEffect.}
  Source Edit
proc cosh(x: float64): float64 {...}{.importc: "cosh", header: "<math.h>", noSideEffect.}

Computes the hyperbolic cosine of x.

See also:

echo cosh(0.0)            ## 1.0
echo cosh(1.0)            ## 1.543080634815244
echo cosh(degToRad(90.0)) ## 2.509178478658057
  Source Edit
proc tanh(x: float32): float32 {...}{.importc: "tanhf", header: "<math.h>", noSideEffect.}
  Source Edit
proc tanh(x: float64): float64 {...}{.importc: "tanh", header: "<math.h>", noSideEffect.}

Computes the hyperbolic tangent of x.

See also:

echo tanh(0.0)            ## 0.0
echo tanh(1.0)            ## 0.7615941559557649
echo tanh(degToRad(90.0)) ## 0.9171523356672744
  Source Edit
proc arccos(x: float32): float32 {...}{.importc: "acosf", header: "<math.h>", noSideEffect.}
  Source Edit
proc arccos(x: float64): float64 {...}{.importc: "acos", header: "<math.h>", noSideEffect.}

Computes the arc cosine of x.

See also:

echo radToDeg(arccos(0.0)) ## 90.0
echo radToDeg(arccos(1.0)) ## 0.0
  Source Edit
proc arcsin(x: float32): float32 {...}{.importc: "asinf", header: "<math.h>", noSideEffect.}
  Source Edit
proc arcsin(x: float64): float64 {...}{.importc: "asin", header: "<math.h>", noSideEffect.}

Computes the arc sine of x.

See also:

echo radToDeg(arcsin(0.0)) ## 0.0
echo radToDeg(arcsin(1.0)) ## 90.0
  Source Edit
proc arctan(x: float32): float32 {...}{.importc: "atanf", header: "<math.h>", noSideEffect.}
  Source Edit
proc arctan(x: float64): float64 {...}{.importc: "atan", header: "<math.h>", noSideEffect.}

Calculate the arc tangent of x.

See also:

echo arctan(1.0) ## 0.7853981633974483
echo radToDeg(arctan(1.0)) ## 45.0
  Source Edit
proc arctan2(y, x: float32): float32 {...}{.importc: "atan2f", header: "<math.h>",
                                  noSideEffect.}
  Source Edit
proc arctan2(y, x: float64): float64 {...}{.importc: "atan2", header: "<math.h>", noSideEffect.}

Calculate the arc tangent of y / x.

It produces correct results even when the resulting angle is near pi/2 or -pi/2 (x near 0).

See also:

echo arctan2(1.0, 0.0) ## 1.570796326794897
echo radToDeg(arctan2(1.0, 0.0)) ## 90.0
  Source Edit
proc arcsinh(x: float32): float32 {...}{.importc: "asinhf", header: "<math.h>", noSideEffect.}
  Source Edit
proc arcsinh(x: float64): float64 {...}{.importc: "asinh", header: "<math.h>", noSideEffect.}
Computes the inverse hyperbolic sine of x.   Source Edit
proc arccosh(x: float32): float32 {...}{.importc: "acoshf", header: "<math.h>", noSideEffect.}
  Source Edit
proc arccosh(x: float64): float64 {...}{.importc: "acosh", header: "<math.h>", noSideEffect.}
Computes the inverse hyperbolic cosine of x.   Source Edit
proc arctanh(x: float32): float32 {...}{.importc: "atanhf", header: "<math.h>", noSideEffect.}
  Source Edit
proc arctanh(x: float64): float64 {...}{.importc: "atanh", header: "<math.h>", noSideEffect.}
Computes the inverse hyperbolic tangent of x.   Source Edit
proc cot[T: float32 | float64](x: T): T {...}{.noSideEffect.}
Computes the cotangent of x (1 / tan(x)).   Source Edit
proc sec[T: float32 | float64](x: T): T {...}{.noSideEffect.}
Computes the secant of x (1 / cos(x)).   Source Edit
proc csc[T: float32 | float64](x: T): T {...}{.noSideEffect.}
Computes the cosecant of x (1 / sin(x)).   Source Edit
proc coth[T: float32 | float64](x: T): T {...}{.noSideEffect.}
Computes the hyperbolic cotangent of x (1 / tanh(x)).   Source Edit
proc sech[T: float32 | float64](x: T): T {...}{.noSideEffect.}
Computes the hyperbolic secant of x (1 / cosh(x)).   Source Edit
proc csch[T: float32 | float64](x: T): T {...}{.noSideEffect.}
Computes the hyperbolic cosecant of x (1 / sinh(x)).   Source Edit
proc arccot[T: float32 | float64](x: T): T {...}{.noSideEffect.}
Computes the inverse cotangent of x.   Source Edit
proc arcsec[T: float32 | float64](x: T): T {...}{.noSideEffect.}
Computes the inverse secant of x.   Source Edit
proc arccsc[T: float32 | float64](x: T): T {...}{.noSideEffect.}
Computes the inverse cosecant of x.   Source Edit
proc arccoth[T: float32 | float64](x: T): T {...}{.noSideEffect.}
Computes the inverse hyperbolic cotangent of x.   Source Edit
proc arcsech[T: float32 | float64](x: T): T {...}{.noSideEffect.}
Computes the inverse hyperbolic secant of x.   Source Edit
proc arccsch[T: float32 | float64](x: T): T {...}{.noSideEffect.}
Computes the inverse hyperbolic cosecant of x.   Source Edit
proc hypot(x, y: float32): float32 {...}{.importc: "hypotf", header: "<math.h>", noSideEffect.}
  Source Edit
proc hypot(x, y: float64): float64 {...}{.importc: "hypot", header: "<math.h>", noSideEffect.}
Computes the hypotenuse of a right-angle triangle with x and y as its base and height. Equivalent to sqrt(x*x + y*y).
echo hypot(4.0, 3.0) ## 5.0
  Source Edit
proc pow(x, y: float32): float32 {...}{.importc: "powf", header: "<math.h>", noSideEffect.}
  Source Edit
proc pow(x, y: float64): float64 {...}{.importc: "pow", header: "<math.h>", noSideEffect.}

Computes x to power raised of y.

To compute power between integers (e.g. 2^6), use ^ proc.

See also:

echo pow(100, 1.5)  ## 1000.0
echo pow(16.0, 0.5) ## 4.0
  Source Edit
proc erf(x: float32): float32 {...}{.importc: "erff", header: "<math.h>", noSideEffect.}
  Source Edit
proc erf(x: float64): float64 {...}{.importc: "erf", header: "<math.h>", noSideEffect.}

Computes the error function for x.

Note: Not available for JS backend.

  Source Edit
proc erfc(x: float32): float32 {...}{.importc: "erfcf", header: "<math.h>", noSideEffect.}
  Source Edit
proc erfc(x: float64): float64 {...}{.importc: "erfc", header: "<math.h>", noSideEffect.}

Computes the complementary error function for x.

Note: Not available for JS backend.

  Source Edit
proc gamma(x: float32): float32 {...}{.importc: "tgammaf", header: "<math.h>", noSideEffect.}
  Source Edit
proc gamma(x: float64): float64 {...}{.importc: "tgamma", header: "<math.h>", noSideEffect.}

Computes the the gamma function for x.

Note: Not available for JS backend.

See also:

echo gamma(1.0)  # 1.0
echo gamma(4.0)  # 6.0
echo gamma(11.0) # 3628800.0
echo gamma(-1.0) # nan
  Source Edit
proc tgamma(x: float32): float32 {...}{.deprecated: "Deprecated since v0.19.0; use \'gamma\' instead",
                               importc: "tgammaf", header: "<math.h>", noSideEffect.}
Deprecated: Deprecated since v0.19.0; use 'gamma' instead
  Source Edit
proc tgamma(x: float64): float64 {...}{.deprecated: "Deprecated since v0.19.0; use \'gamma\' instead",
                               importc: "tgamma", header: "<math.h>", noSideEffect.}
Deprecated: Deprecated since v0.19.0; use 'gamma' instead
The gamma function   Source Edit
proc lgamma(x: float32): float32 {...}{.importc: "lgammaf", header: "<math.h>", noSideEffect.}
  Source Edit
proc lgamma(x: float64): float64 {...}{.importc: "lgamma", header: "<math.h>", noSideEffect.}

Computes the natural log of the gamma function for x.

Note: Not available for JS backend.

See also:

echo lgamma(1.0)  # 1.0
echo lgamma(4.0)  # 1.791759469228055
echo lgamma(11.0) # 15.10441257307552
echo lgamma(-1.0) # inf
  Source Edit
proc floor(x: float32): float32 {...}{.importc: "floorf", header: "<math.h>", noSideEffect.}
  Source Edit
proc floor(x: float64): float64 {...}{.importc: "floor", header: "<math.h>", noSideEffect.}

Computes the floor function (i.e., the largest integer not greater than x).

See also:

echo floor(2.1)  ## 2.0
echo floor(2.9)  ## 2.0
echo floor(-3.5) ## -4.0
  Source Edit
proc ceil(x: float32): float32 {...}{.importc: "ceilf", header: "<math.h>", noSideEffect.}
  Source Edit
proc ceil(x: float64): float64 {...}{.importc: "ceil", header: "<math.h>", noSideEffect.}

Computes the ceiling function (i.e., the smallest integer not smaller than x).

See also:

echo ceil(2.1)  ## 3.0
echo ceil(2.9)  ## 3.0
echo ceil(-2.1) ## -2.0
  Source Edit
proc round(x: float32): float32 {...}{.importc: "roundf", header: "<math.h>", noSideEffect.}
  Source Edit
proc round(x: float64): float64 {...}{.importc: "round", header: "<math.h>", noSideEffect.}

Rounds a float to zero decimal places.

Used internally by the round proc when the specified number of places is 0.

See also:

echo round(3.4) ## 3.0
echo round(3.5) ## 4.0
echo round(4.5) ## 5.0
  Source Edit
proc trunc(x: float32): float32 {...}{.importc: "truncf", header: "<math.h>", noSideEffect.}
  Source Edit
proc trunc(x: float64): float64 {...}{.importc: "trunc", header: "<math.h>", noSideEffect.}

Truncates x to the decimal point.

See also:

echo trunc(PI) # 3.0
echo trunc(-1.85) # -1.0
  Source Edit
proc fmod(x, y: float32): float32 {...}{.deprecated: "Deprecated since v0.19.0; use \'mod\' instead",
                               importc: "fmodf", header: "<math.h>", noSideEffect.}
Deprecated: Deprecated since v0.19.0; use 'mod' instead
  Source Edit
proc fmod(x, y: float64): float64 {...}{.deprecated: "Deprecated since v0.19.0; use \'mod\' instead",
                               importc: "fmod", header: "<math.h>", noSideEffect.}
Deprecated: Deprecated since v0.19.0; use 'mod' instead
Computes the remainder of x divided by y.   Source Edit
proc `mod`(x, y: float32): float32 {...}{.importc: "fmodf", header: "<math.h>", noSideEffect.}
  Source Edit
proc `mod`(x, y: float64): float64 {...}{.importc: "fmod", header: "<math.h>", noSideEffect.}

Computes the modulo operation for float values (the remainder of x divided by y).

See also:

( 6.5 mod  2.5) ==  1.5
(-6.5 mod  2.5) == -1.5
( 6.5 mod -2.5) ==  1.5
(-6.5 mod -2.5) == -1.5
  Source Edit
proc round[T: float32 | float64](x: T; places: int): T {...}{.
    deprecated: "use strformat module instead", noSideEffect.}
Deprecated: use strformat module instead

Decimal rounding on a binary floating point number.

This function is NOT reliable. Floating point numbers cannot hold non integer decimals precisely. If places is 0 (or omitted), round to the nearest integral value following normal mathematical rounding rules (e.g. round(54.5) -> 55.0). If places is greater than 0, round to the given number of decimal places, e.g. round(54.346, 2) -> 54.350000000000001421…. If places is negative, round to the left of the decimal place, e.g. round(537.345, -1) -> 540.0

echo round(PI, 2) ## 3.14
echo round(PI, 4) ## 3.1416
  Source Edit
proc floorDiv[T: SomeInteger](x, y: T): T {...}{.noSideEffect.}

Floor division is conceptually defined as floor(x / y).

This is different from the system.div operator, which is defined as trunc(x / y). That is, div rounds towards 0 and floorDiv rounds down.

See also:

echo floorDiv( 13,  3) #  4
echo floorDiv(-13,  3) # -5
echo floorDiv( 13, -3) # -5
echo floorDiv(-13, -3) #  4
  Source Edit
proc floorMod[T: SomeNumber](x, y: T): T {...}{.noSideEffect.}

Floor modulus is conceptually defined as x - (floorDiv(x, y) * y).

This proc behaves the same as the % operator in Python.

See also:

echo floorMod( 13,  3) #  1
echo floorMod(-13,  3) #  2
echo floorMod( 13, -3) # -2
echo floorMod(-13, -3) # -1
  Source Edit
proc c_frexp(x: float32; exponent: var int32): float32 {...}{.importc: "frexp",
    header: "<math.h>", noSideEffect.}
  Source Edit
proc c_frexp(x: float64; exponent: var int32): float64 {...}{.importc: "frexp",
    header: "<math.h>", noSideEffect.}
  Source Edit
proc frexp[T, U](x: T; exponent: var U): T {...}{.noSideEffect.}

Split a number into mantissa and exponent.

frexp calculates the mantissa m (a float greater than or equal to 0.5 and less than 1) and the integer value n such that x (the original float value) equals m * 2**n. frexp stores n in exponent and returns m.

var x: int
echo frexp(5.0, x) # 0.625
echo x # 3
  Source Edit
proc log2(x: float32): float32 {...}{.importc: "log2f", header: "<math.h>", noSideEffect.}
  Source Edit
proc log2(x: float64): float64 {...}{.importc: "log2", header: "<math.h>", noSideEffect.}

Computes the binary logarithm (base 2) of x.

See also:

echo log2(8.0)  # 3.0
echo log2(1.0)  # 0.0
echo log2(0.0)  # -inf
echo log2(-2.0) # nan
  Source Edit
proc splitDecimal[T: float32 | float64](x: T): tuple[intpart: T, floatpart: T] {...}{.
    noSideEffect.}

Breaks x into an integer and a fractional part.

Returns a tuple containing intpart and floatpart representing the integer part and the fractional part respectively.

Both parts have the same sign as x. Analogous to the modf function in C.

echo splitDecimal(5.25)  # (intpart: 5.0, floatpart: 0.25)
echo splitDecimal(-2.73) # (intpart: -2.0, floatpart: -0.73)
  Source Edit
proc degToRad[T: float32 | float64](d: T): T {...}{.inline.}

Convert from degrees to radians.

See also:

echo degToRad(180.0) # 3.141592653589793
  Source Edit
proc radToDeg[T: float32 | float64](d: T): T {...}{.inline.}

Convert from radians to degrees.

See also:

echo degToRad(2 * PI) # 360.0
  Source Edit
proc sgn[T: SomeNumber](x: T): int {...}{.inline.}

Sign function.

Returns:

  • -1 for negative numbers and NegInf,
  • 1 for positive numbers and Inf,
  • 0 for positive zero, negative zero and NaN
echo sgn(5)    # 1
echo sgn(0)    # 0
echo sgn(-4.1) # -1
  Source Edit
proc `^`[T](x: T; y: Natural): T

Computes x to the power y.

Exponent y must be non-negative, use pow proc for negative exponents.

See also:

Examples:

assert -3.0 ^ 0 == 1.0
assert -3 ^ 1 == -3
assert -3 ^ 2 == 9
assert -3.0 ^ 3 == -27.0
assert -3.0 ^ 4 == 81.0
  Source Edit
proc gcd[T](x, y: T): T

Computes the greatest common (positive) divisor of x and y.

Note that for floats, the result cannot always be interpreted as "greatest decimal z such that z*N == x and z*M == y where N and M are positive integers."

See also:

Examples:

doAssert gcd(13.5, 9.0) == 4.5
  Source Edit
proc gcd(x, y: SomeInteger): SomeInteger

Computes the greatest common (positive) divisor of x and y, using binary GCD (aka Stein's) algorithm.

See also:

Examples:

doAssert gcd(12, 8) == 4
doAssert gcd(17, 63) == 1
  Source Edit
proc lcm[T](x, y: T): T

Computes the least common multiple of x and y.

See also:

Examples:

doAssert lcm(24, 30) == 120
doAssert lcm(13, 39) == 39
  Source Edit